
THE SCIENTIFIC GRAPHICS TOOLKIT

D.W. Denbo1

1Joint Institute for the Study of Ocean and Atmosphere, University of Washington, Seattle, WA
I. Abstract
The Scientific Graphics Toolkit (sgt), a set of java

graphics classes, was developed to allow a NOAAServer
user to interactively preview and overlay plots (Denbo,
1998; Denbo, 1997). Sgt was designed to allow a graph-
ics developer a great deal of flexibility and freedom in
producing graphics applications. Support for multiple
transformations, X-Y plots, contour and “pixel” plots, and
vector plots are part of Sgt. Sgt also provides developer
support to allow users to zoom a graph, select graphical
elements using a mouse, and interactively edit graphical
elements.

The first sgt applications include the NOAAServer
Prototype data browser (Brazille et al., 1997) and a col-
laborative tool for the visualization of distributed data sets
(Denbo and Windsor, elsewhere in these proceedings).
Sgt enables a user to preview and overlay plots from
multiple datasets that are stored on different servers.

Sgt is currently implemented using the Java JDK 1.1.
Future plans include porting Sgt to JDK 1.2 and the
Java2D API. The new features of Java2D will enable sgt
to support line styles (e.g. dashed, line widths), rotation
of text at arbitrary angles, and improved font capabilities.

II. Scientific Graphics Toolkit

A. Design Goals
Sgt was developed primarily to provide client-side

graphics for the NOAAServer project (Daddio et al.,
1999; Soreide and Daddio, 1998). Existing java graphics
class libraries were considered, but were not used since
they did not support one or more of the design goals. Sgt
was designed to support the NOAAServer project by:

● Allowing a graphics client developer a great deal of 
flexibility and freedom.

● GIS style layer approach to display geophysical data

● Support several types of graphical display

● X-Y plot

● 2-D contour and “pixel” plots.

● Vector plots.

● Point-Value plots.

● Develop a framework that is easily extended

B. Architecture
Sgt uses two separate coordinate systems (physical

and user) and translates these to device coordinates.
Device coordinates are the JDK1.1 graphics coordinates
(pixels) where the origin is in the upper left. Physical
coordinates have a linear transformation to device coor-
dinates and are floating point quantities with the origin at
the lower left. For printing, the physical coordinates
(either inches or millimeters) determine the actual printed
position and size of sgt graphics. The transformation of
user coordinates to physical coordinates is arbitrary and
defined by the developer.

Sgt has three main components (Fig. 1) that reflect

these coordinate systems. These components are: the
Pane, on which all graphics are drawn; the Layer, which
insulates the developer from the device coordinates of
the pane; and the Graph, which provides the transforms
from user coordinates to physical coordinates.

Pane. The Pane can either draw on the screen, using
double buffered images, or on a user supplied Graphics
object. Sgt determines whether the supplied Graphics
object is associated with a printer or off-screen image to
properly scale the output. The Pane also manages the
mouse events and drawing the associated Layers. Many
Layers can be associated with a single Pane.

Layer. Each Layer can have at most a single Graph.
However, any number of LayerChild objects can be asso-
ciated with each Layer. LayerChild objects specify their
size and position on the Layer in physical coordinates

Fig. 1: Main sgt graphical components.

Pane Layer Graph

Layerchild

Device units Physical units User units

SGLabel
LineKey
…



(thus they are independent of any user transformations
that are active for the Graph). SGLabel, LineKey, Color-
Key, and Logo objects are some of the LayerChild
objects available.

Graph. CartesianGraph, MapGraph, and PolarGraph
are examples of Graph classes that can be associated
with a Layer. (Only the CartesianGraph is currently imple-
mented.) While the CartesianGraph must specify x and y
transformation objects, it can have any number of x and y
axes. The appropriate Renderer object, responsible for
the graphical representation of the data, is automatically
chosen when the data and rendering attribute objects are
associated with a CartesianGraph.

C. Data Model
The sgt data model consists of data type interfaces,

coordinate system interfaces, container classes, and a
metadata class (Fig. 2). Sgt has interfaces for point, line,

grid and image data. These data types were imple-
mented as interfaces to provide the greatest flexibility for
developers using sgt. Developers can either implement
the appropriate data type interface in an existing class
that already provides data or use one of the concrete
classes provided by sgt (SimplePoint, SimpleLine, or
SimpleGrid). The interfaces extending CoordinateSystem
(Cartesian, Geographic, and Polar) do not define any
methods that need to be implemented, however, the
interfaces are used to indicate the coordinate system to
sgt. Classes that can contain other data types, which can
include point, line, grid, or image data, are the Collection
and SGTVector classes. Finally, the SGTMetaData class
encapsulates information about variables or axes, e.g.,
name, units, etc.

D. Mouse Events
Mouse events are used to notify the application that

an object has been selected, a zoom rectangle is avail-

able, or that an object has been moved. Since multiple
Layers can exist it is not always clear to which Layer a
zoom operation should be applied. Thus, sgt makes the
coordinates of the zoom rectangle available, but leaves
the implementation of zooming to the application devel-
oper.

III. Applications Using SGT
The first two applications described here implement

sgt graphics via the GraphicLayout class, which extends
the sgt Pane class. Several classes extend GraphicLay-
out, including RasterTimeSeriesLayout, Line-
TimeSeriesLayout, LineProfileLayout, and
StationPlotLayout. The GraphicLayouts are responsible
for managing the main graphics Pane, key Pane, Carte-
sianGraph, transforms, axes, and labels. The Graphi-
cLayouts also manage object selection and zooming.

A. NOAAServer Prototype Data Browser
The NOAAServer prototype data browser (Brazille,

Denbo, and Zhu, 1997) allows a user to select a remote
dataset, navigate through the dataset, request a small
data subset from the dataset, receive the data request,
and graphically display the data. The graphical display is
accomplished using sgt. Sgt, however, is a low-level
graphical toolkit and an additional software layer is
required to use sgt.

The StationPlotLayout uses the LineCartesianRen-
derer with SGTLine and LineAttribute objects. The Lin-
eAttribute is set to specify the plot mark rendering option.
In Fig. 3 two sets of station locations are plotted using

Fig. 2: Sgt data model classes.

Abstract/interface
Class

Fig. 3: Station locations for the TOGA-TAO moorings and
selected CTD observations.



two Layers. The first Layer includes the SGLabel, Logo,
and a CartesianGraph. The first CartesianGraph includes
the axes and data that represents the TOGA-TAO moor-
ing locations. The second Layer only contains a Carte-
sianGraph which in turn only includes the data for the
CTD measurement locations.

The RasterTimeSeriesLayout uses the RasterCarte-
sianRenderer with SGTGrid and GridAttribute objects.
The GridAttribute includes a ColorMap and a transform to
specify how data values are mapped to colors and speci-
fies the raster rendering option (Fig. 4). The Raster-

TimeSeriesLayout is designed to render a single data
subset. 

B. Collaborative Tool for in situ Data Visualization
OceanShare was developed to allow scientists to

effectively communicate about data and analyses in a
collaborative environment. OceanShare uses network
data access developed for the NOAAServer prototype
data browser and collaborative capabilities provided by
NCSA’s Habanero framework. (Information about obtain-
ing and installing OceanShare can be found at “http://
www.epic.noaa.gov/collab”. Habanero is available at
“http://www.ncsa.uiuc.edu/SDG/Software/Habanero”.) 

OceanShare has been implemented employing
LineProfileLayout which uses the LineCartesianRenderer
with SGTLine and LineAttribute objects. The LineAttribute
is used to specify the line style for plotting (highlight,
mark, or solid) and color. In Fig. 5, four profiles are plot-

ted using four separate Layers. The first Layer includes
the SGLabels and a CartesianGraph. The first Cartesian-
Graph includes the axes and the first profile data. Subse-
quent Layers contain a single CartesianGraph and profile
data set. The LineKey contains key metadata for the pro-
file (latitude, longitude, time) and selecting a key entry
allows the user to highlight a profile.

C. TAO Meteorological Data Display
In this Java application, graphics of real-time TAO

meteorological data were implemented using sgt (Fig. 6),
without using the GraphicLayout class. This application
downloads TAO meteorological data to the application
via http. The user can then choose a buoy or a variable
with a mouse click, zoom on the plot by dragging a box
around a portion of the graph, or see the data values in a
small pop up window.

IV. Future Directions
The second version of sgt is presently under develop-

ment. Lessons learned during the implementation of the
NOAAServer client graphics are being used to reorga-
nize the sgt classes (Denbo, 1999) and improve event
handling. The new class organization will make sgt eas-
ier for a developer to use and also provide additional flex-
ibility.

Presently sgt is implemented using Java JDK1.1.
JDK1.1 imposes many restrictions on the graphical
developer. For example, line width, dash styles, and label
orientation, must all be implemented by the developer.
JDK1.2 promises to alleviate these limitations when
finally made available. The addition of line rendering

Fig. 4: Time-depth raster plot of temperature from
January 1997 through February 1998 at 100W at the
equator.

Fig. 5: Temperature profiles from TAO mooring at 0N
110W and CTD observations near 1N 155W.



styles and a much more flexible string rendering mecha-
nism should significantly improve sgt’s capabilities.

The MapGraph class and its supporting classes need
to be designed and implemented. These classes will pro-
vide developers to display geographical data in a wide
number of map projections.

Acknowledgment. This publication is funded par-
tially through the Joint Institute for the Study of the Atmo-
sphere and Ocean (JISAO) under NOAA Cooperative
Agreement NO. NA67RJ0155, Contribution No 700. The
views expressed herein are those of the author(s) and do
not necessarily reflect the views of NOAA or any of its
subagencies. This work was funded by the NOAAServer
project and NOAA’s HPCC program. 

V. References

Brazille, W., D.W. Denbo, and W.H. Zhu, 1997.
NOAAServer Version 2 Co-plotting Prototype. Pre-
sented at NOAA WebShop97, October 22-23, 1997,
Silver Spring, Maryland.

Daddio, E., S. Hankin, N. Soreide, D. Denbo, W.
Zhu, S. Roberts, J. Sirott, and S. Rosenberg, 1999.
NOAAServer: Unified access to distributed NOAA
data. In 15th International Conference on Interactive
Information and Processing Systems (IIPS) for Meteo-
rology, Oceanography, and Hydrology, Dallas, Texas,
AMS, 10-15 January 1999, 430-433.

Denbo, D.W., 1999. Using Java graphics to display
ocean observations in NOAAServer. In 15th Interna-
tional Conference on Interactive Information and Pro-
cessing Systems (IIPS) for Meteorology,
Oceanography, and Hydrology, AMS, Dallas, TX, 10-
15 January 1999, 442-444.

Denbo, D.W., 1997. NOAAServer Graphics Engine Archi-
tecture. Presented at NOAA WebShop97, October 22-
23, 1997, Silver Spring, Maryland.

Soreide, N.N., and E. Daddio, 1998. NOAAServer: Uni-
fied access to distributed NOAA environmental data.
In Marine Technology Society/Ocean Community
Conference ’98, Baltimore, MD, 16-19 November
1998. 

Fig. 6: Northward and eastward TAO mooring winds from
November 7, 1998 through January 4, 1999 at 5N 140W.


